首页> 外文OA文献 >Aerothermodynamics of Pre-Flight and In-Flight Testing Methodologies for Atmospheric Entry Probes
【2h】

Aerothermodynamics of Pre-Flight and In-Flight Testing Methodologies for Atmospheric Entry Probes

机译:大气进入探头的飞行前和飞行中测试方法的空气热力学

摘要

Spacecraft, returning back to Earth, experience a very harsh environment during the encounter with the particles of the atmosphere. One of the major issues of the atmospheric entry is the extreme aerodynamic heating and the exothermic chemical reactions due to the gas-surface interaction at hypersonic free stream velocities. There is a constant effort by the space agencies to increase the understanding of the re-entry flight dynamics to optimize the spacecraft and especially its thermal protection system design. During the design process, ground tests and numerical tools are extensively used for their low cost and controlled environment abilities. However, real flight tests are indispensable for ground test and numerical tools validation. Due to high costs, such missions are rarely launched and thus there is an increasing interest in small affordable entry probes. Such platforms, once matured enough, may serve as an easily accessible tool to produce experimental data. It is the aim of this dissertation to propose tools to improve ground test capabilities and on the other hand to present the design, and using the developed tools, the testing of aerothermodynamic experimental payloads to collect flight data with a small entry probe. QARMAN (QubeSat for Aerothermodynamic Research and Measurements on AblatioN) is a triple unit CubeSat with ablative and ceramic thermal protection systems. It will perform an atmospheric entry with 7.7 km/s and a peak heat flux of 1.7 MW/m2. The aim of the in-flight experiments is to retrieve real flight data on ablator efficiency (temperature, pressure, recession) and temperature-pressure measurements for transition on the side panels. The peculiar squared geometry of QARMAN led to the development of a Flight-to-Ground Duplication methodology accounting for spacecraft geometries. It allows duplicating fully the stagnation region of a spacecraft with an arbitrary geometry in subsonic plasma wind tunnels. As a requirement of this methodology, free stream characterization techniques, specifically enthalpy measurement techniques are introduced. Experimental and numerical databases are built.A thorough ablation characterization campaign in VKI Plasmatron is conducted to provide input for building material response models.The cork P50 ablator is studied in terms of surface and sub-surface temperatures, emissivity, mass loss, char-pyrolysis layers, outgassing species and recession and swelling profiles. Similar in-flight experiments are proposed for QARMAN flight for in-depth temperature and pressure. Methods to build models for advanced data treatment are proposed. A full picture of post-flight analysis strategy is described for each study to relate the ground tools and flight data.
机译:回到地球的航天器在与大气粒子相遇时会经历非常恶劣的环境。大气进入的主要问题之一是由于高超声速自由气流速度下的气体表面相互作用而导致的极端空气动力学加热和放热化学反应。航天机构一直在不断努力,以增加对重返飞行动力学的了解,以优化航天器,尤其是其热防护系统的设计。在设计过程中,地面测试和数值工具因其低成本和可控制的环境能力而被广泛使用。但是,实际的飞行测试对于地面测试和数字工具验证是必不可少的。由于成本高昂,很少执行这样的任务,因此人们对可负担得起的小型入门级探针越来越感兴趣。这样的平台一旦成熟就可以用作生成实验数据的便捷工具。本文的目的是提出改进地面测试能力的工具,另一方面提出设计方案,并使用开发的工具对空气动力学热力学有效载荷进行测试,以使用小型进入探针来收集飞行数据。 QARMAN(用于空气热力学研究和测量的QubeSat)是具有消融和陶瓷热保护系统的三单元CubeSat。它将以7.7 km / s的速度进入大气层,峰值热通量为1.7 MW / m2。飞行中实验的目的是获取有关消融效率(温度,压力,后退)和温度-压力测量值的真实飞行数据,以便在侧板上进行过渡。 QARMAN独特的平方几何形状导致了考虑到航天器几何形状的“空对地复制”方法的发展。它允许在亚音速等离子风洞中完全复制具有任意几何形状的航天器的停滞区域。作为该方法的要求,引入了自由流表征技术,特别是焓测量技术。建立了实验和数值数据库。在VKI Plasmatron中进行了彻底的烧蚀表征活动,以为建筑材料响应模型提供输入。从表面和次表面温度,发射率,质量损失,炭热解等方面研究了软木P50烧蚀剂层,放气物种以及衰退和膨胀剖面。针对QARMAN飞行提出了类似的机上实验,以进行深入的温度和压力研究。提出了建立高级数据处理模型的方法。每项研究都介绍了飞行后分析策略的全貌,以关联地面工具和飞行数据。

著录项

  • 作者

    Sakraker, Isil;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号